Immunohistochemical evaluation of the heat shock response to nonablative fractional resurfacing.

نویسندگان

  • Basil M Hantash
  • Vikramaditya P Bedi
  • Steven K Struck
  • Kin F Chan
چکیده

Despite the emergence of nonablative fractional resurfacing (NFR) as a new therapeutic modality for skin photoaging, little is known about the molecular events that underlie the heat shock response to different treatment parameters. Human subjects are treated with a scanned 1550-nm fractional laser at pulse energies spanning 6 to 40 mJ and a 140-μm spot size. The heat shock response is assessed immunohistochemically immediately through 7 days posttreatment. At the immediately posttreatment time point, we observe subepidermal clefting in most sections. The basal epidermis and dermal zones of sparing are both found to express HSP47, but not HSP72. By day 1, expression of HSP72 is detected throughout the epidermis, while that of HSP47 remains restricted to the basal layer. Both proteins are detected surrounding the dermal portion of the microscopic treatment zone (MTZ). This pattern of expression persists through day 7 post-NFR, although neither protein is found within the MTZ. Immediately posttreatment, the mean collagen denaturation zone width is 50 μm at 6 mJ, increasing to 202 μm at 40 mJ. The zone of cell death exceeds the denaturation zone by 19 to 55% over this pulse energy range. The two zones converge by day 7 posttreatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.

UNLABELLED The drive to attain cosmetic facial enhancement with minimal risk and rapid recovery has inspired the field of nonsurgical skin rejuvenation. Laser resurfacing was introduced in the 1980s with continuous wave carbon dioxide (CO(2)) lasers; however, because of a high rate of side effects, including scarring, short-pulse, high-peak power, and rapidly scanned, focused-beam CO(2) lasers ...

متن کامل

Treatment of burn scars with the 1,550 nm nonablative fractional Erbium Laser.

BACKGROUND Scarring is a major source of morbidity in patients with burns. Burn scars are difficult to treat and are among the worst scars seen in clinical medicine. Fractional laser resurfacing is a promising treatment option because of its unique wound healing response and depth of penetration. OBJECTIVE To evaluate the efficacy of nonablative fractional resurfacing as a therapeutic option ...

متن کامل

Fractional nonablative laser resurfacing: is there a skin tightening effect?

BACKGROUND Fractional photothermolysis, an approach to laser skin resurfacing that creates microscopic thermal wounds in skin separated by islands of spared tissue, was developed to overcome the high incidence of adverse events and prolonged healing times associated with full coverage ablative laser procedures. OBJECTIVE To examine whether fractional nonablative laser resurfacing induces skin...

متن کامل

Nonablative Fractional Laser Resurfacing

The desire to achieve cosmetic rejuvenation and reduce effects of aging and photodamage urged scientists to develop effectual techniques which have minimal side effects and impressive long-term efficacy. Traditional ablative resurfacing laser therapy has been used for several years;however, it has harmful side effects on the patient’s skin such as dyspigmentation, persistent erythema, infection...

متن کامل

Thermal Response of In Vivo Human Skin to Fractional Radiofrequency Microneedle Device

Background. Fractional radiofrequency microneedle system (FRMS) is a novel fractional skin resurfacing system. Data on thermal response to this fractional resurfacing technique is limited. Objectives. To investigate histologic response of in vivo human skin to varying energy settings and pulse stacking of a FRMS in dark-skinned subjects. Methods. Two female volunteers who were scheduled for abd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2010